Mammary cancer chemoprevention by withaferin A is accompanied by in vivo suppression of self-renewal of cancer stem cells.
نویسندگان
چکیده
Current dogma favors elimination of therapy-resistant cancer stem cells for chemoprevention of breast cancer. We showed recently that mammary cancer development in a transgenic mouse model (mouse mammary tumor virus-neu; MMTV-neu) was inhibited significantly upon treatment with withaferin A (WA), a steroidal lactone derived from a medicinal plant. Herein, we demonstrate that the mammary cancer prevention by WA is accompanied by in vivo suppression of breast cancer stem cells (bCSC). In vitro mammosphere formation was dose-dependently inhibited by WA treatment in MCF-7 and SUM159 human breast cancer cells. Other markers of bCSC, including aldehyde dehydrogenase 1 (ALDH1) activity and CD44(high)/CD24(low)/epithelial-specific antigen-positive (ESA+) fraction, were also decreased significantly in the presence of plasma achievable doses of WA. However, WA exposure resulted in cell line-specific changes in Oct4, SOX-2, and Nanog mRNA expression. WA administration to MMTV-neu mice (0.1 mg/mouse, 3 times/week for 28 weeks) resulted in inhibition of mammosphere number and ALDH1 activity in vivo. Mechanistic studies revealed that although urokinase-type plasminogen activator receptor overexpression conferred partial protection against bCSC inhibition by WA, Notch4 was largely dispensable for this response. WA treatment also resulted in sustained (MCF-7) or transient (SUM159) downregulation of Bmi-1 (B-cell-specific Moloney murine leukemia virus insertion region-1) protein. Ectopic expression of Bmi-1 conferred partial but significant protection against ALDH1 activity inhibition by WA. Interestingly, WA treatment caused induction of Kruppel-like factor 4 (KLF4) and its knockdown augmented bCSC inhibition by WA. In conclusion, this study shows in vivo effectiveness of WA against bCSC.
منابع مشابه
Functional Inhibition of Nucleostemin Gene-Acoordinator of Self-Renewal Ability-In Bone Marrow Derived Mesenchymal Stem Cells by Rnai Strategy
Purpose: The aim is to downregulate the expression level of NS as an important factor in sustaining stem cells and certain types of cancer cells self-renewal ability in bone marrow derived mesenchymal stem cells by RNAi strategy and investigate the effects of absence of NS in these cells. Materials and Methods: Double strand NS-specific and control siRNA oligos were designed and transfected in...
متن کاملLncRNA Miat Promotes Proliferation of Cervical Cancer Cells and Acts as an Anti-apoptotic Factor
There are a sub-population of cells in tumor tissues known as cancer stem cells (CSCs) which have similar features with stem cells, including self-renewal and differentiation capacity. Recently, it was established that not only stem cells factors such as Oct4, but also ES-associated lncRNAs are contributing to various regulatory aspects of CSCs. Myocardial infarction associated transcript (MIAT...
متن کاملThe Effect of Plant-derived Compounds in Targeting Cancer Stem Cells
Background Cancer stem cells (CSCs) are a small subpopulation of cancer cells with self-renewal and differentiation ability. Furthermore, CSCs are resistant to chemoradiotherapy due to their high level of detoxifying enzymes, strong DNA repair abilities, and high drug efflux capacity. Objective Therefore, CSCs are supposed to account for cancer initiation, progression, metastasis, recurrence, ...
متن کاملCanine Mammary Gland Cancer Stem Cell and its Potential Role in Malignant Biologic Behavior
BACKGROUND:Canine mammary gland cancers are the most prevalent malignancies in dogs. There are different challenges regarding management of these cancers in dogs and human, one hypothesis is related to small cellular subset of tumor mass called cancer stem cell. These cells are therapy resistant and cause metastasis and relapse even after primary successful treatment. The well-identified phenot...
متن کاملسلولهای بنیادی طبیعی و سرطانی خونی: داروها و سمیّت
Stem cells occur in many somatic tissues of multicellular organism and are important participants in their physiology. Stem cells have three distinctive properties: 1- self-renewal, 2- the potential to proliferate extensively and 3- capability to develop into multiple lineages. Every time a stem cell divides, it makes one exact copy and one progenitor cell. Progenitor cells have finite division...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer prevention research
دوره 7 7 شماره
صفحات -
تاریخ انتشار 2014